Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films
نویسندگان
چکیده
We present laser-induced forward transfer of solid-phase polymer films, shaped using a Digital Micromirror Device (DMD) as a variable illumination mask. Femtosecond laser pulses with a fluence of 200-380 mJ/cm at a wavelength of 800 nm from a Ti:sapphire amplifier were used to reproducibly transfer thin films of poly(methyl methacrylate) as small as ~30 μm by ~30 μm with thickness ~1.3 μm. This first demonstration of DMD-based solid-phase LIFT shows minimum feature sizes of ~10μm. ©2015 Optical Society of America OCIS codes: (140.3390) Laser materials processing; (240.0310) Thin films; (140.7090) Ultrafast lasers; (220.4000) Microstructure fabrication; (070.6120) Spatial light modulators. References and links 1. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986). 2. M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012). 3. J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18(2), 025403 (2007). 4. J. Shaw Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012). 5. S. H. Ko, H. Pan, S. G. Ryu, N. Misra, C. P. Grigoropoulos, and H. K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing,” Appl. Phys. Lett. 93(15), 91–94 (2008). 6. W. A. Tolbert, I.-Y. Y. Sandy Lee, M. M. Doxtader, E. W. Ellis, and D. D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411–421 (1993). 7. B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys. 96(6), 3478–3481 (2004). 8. M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nüesch, and D. Rentsch, “Aryltriazene Photopolymers for UVLaser Applications: Improved Synthesis and Photodecomposition Study,” Macromol. Chem. Phys. 208(3), 277– 286 (2007). 9. D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” EPL (Europhysics Lett. 83(3), 38003 (2008). 10. M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci. 258(22), 8475–8483 (2012). 11. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010). 12. L. Rapp, C. Cibert, A. P. Alloncle, P. Delaporte, S. Nenon, C. Videlot-Ackermann, and F. Fages, “Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials,” Proc. SPIE 33, 71311L (2008). 13. M. Feinaeugle, P. Horak, C. L. Sones, T. Lippert, and R. W. Eason, “Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling,” Appl. Phys., A Mater. Sci. Process. 116(4), 1–12 (2014). 14. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011). #234126 $15.00 USD Received 6 Feb 2015; revised 10 Apr 2015; accepted 11 Apr 2015; published 17 Apr 2015 (C) 2015 OSA 1 May 2015 | Vol. 5, No. 5 | DOI:10.1364/OME.5.001129 | OPTICAL MATERIALS EXPRESS 1129 15. M. Feinaeugle, C. L. Sones, E. Koukharenko, and R. W. Eason, “Fabrication of a thermoelectric generator on a polymer-coated substrate via laser-induced forward transfer of chalcogenide thin films,” Smart Mater. Struct. 22(11), 115023 (2013). 16. L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 1– 7 (2014). 17. J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013). 18. R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011). 19. Texas Instruments, “DLP & MEMS,” http://www.ti.com/lsds/ti/analog/dlp/overview.page, accessed 5th April
منابع مشابه
Laser-induced backward transfer of nanoimprinted polymer elements
Femtosecond laser-induced backward transfer of transparent photopolymers is demonstrated in the solid state, assisted by a digital micromirror spatial light modulator for producing shaped deposits. Through use of an absorbing silicon carrier substrate, we have been able to successfully transfer solid-phase material, with lateral dimensions as small as ~6 μm. In addition, a carrier of silicon in...
متن کاملLaser forward transfer based on a spatial light modulator
We report the first demonstration of laser forward transfer using a real-time reconfigurable mask based on a spatial light modulator. The ability to dynamically change the projected beam shape and size of a coherent light source, in this case a 355-nm pulsed UV laser, represents a significant technological advancement in laser direct-write processing. The application of laser transfer technique...
متن کاملGeneration of axially modulated plasma waveguides using a spatial light modulator.
We demonstrate the generation of axially modulated plasma waveguides using spatially patterned high-energy laser pulses. A spatial light modulator (SLM) imposes transverse phase front modulations on a low-energy (10 mJ) laser pulse which is interferometrically combined with a high-energy (130-450 mJ) pulse, sculpting its intensity profile. This enables dynamic and programmable shaping of the la...
متن کاملTime resolved dynamics of rapid melting and resolidification of Sb thin films under ns and ps laser pulse irradiation
Related Articles Physical model for the laser induced forward transfer process Appl. Phys. Lett. 100, 071603 (2012) Layer dependent mechanical responses of graphene composites to near-infrared light Appl. Phys. Lett. 100, 073108 (2012) Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films Appl. Phys. Lett. 100, 041106 (2012) Observation of stacking...
متن کاملShaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device.
Laguerre-Gaussian (LG) beams are used in many research fields, including microscopy, laser cavity modes, and optical tweezing. We developed a holographic method to generate pure LG modes (amplitude and phase) with a binary amplitude-only digital micromirror device (DMD) as an alternative to the commonly used phase-only spatial light modulator. The advantages of such a DMD include very high fram...
متن کامل